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Dispersion systems of various kinds are subject to time variation of particle size distribution. 
A simple model is proposed describing this behaviour. The solution is presented of the appropriate 
differential equation for a particular case which serves to show principal properties of the model 
proposed. 

The process of formation of a new phase in a fluid is usually associated with the appearance of 
individual particles of the new phase (crystallization, emulsification, aerosol formation or con-
densation, boiling). The process is usually viewed as a superposition of consecutive phenomena of 
nucleation and particle g rowth 1 ' 2 . It has been known f rom experience 1 - 4 that such process 
is accompanied by aging or ripening of the particles causing the particle size distribution to 
change: the mean particle size grows while the total number of particles decreases. It is a natural 
consequence of the thermodynamic instability of the system exhibiting large interfacial area. 
A satisfactory model of the given phenomenon has not been proposed to date even for cases of 
utmost practical interest2. For instance, the phenomenon of ripening of crystalline suspensions 
has been known and technologically utilized for a longer t i m e 3 - 5 . The aim of this work is to 
present a simple model of this process. 

Let us suppose that a particle A t consisting of i elementary particles (ions, atoms, 
molecules) loses or gains due to random collisions only one particle over an infinite-
simal unit of time. The sequence of reactions of the particle A; may be illustrated 
schematically by 

+ A + A , , 

" ^ A . A i + 1 . . . ( / ) 
— A —A 

The rate of formation of particle A ; is then given by 

cp{i, t)jdt = V ^ z - 1, t) - (A, + A'i) P(U t) + ni + ip(i + l , t ) (2) 

where p(i, t) is the probability density for the existence of particle A ; in an instant 
t in a unit volume of the system (a quantity proportional to concentration of particles 
Aj). and ji; are the frequencies of conversion of particle A ; into A ^ j and A i + 1. 
Let us assume that the frequencies of the reaction events (conversions) are proportional 
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t o the sur face a rea of the p a r o t i d e s 6 

p-^pi2'3 (3) 

a n d tha t the f u n c t i o n p(i, t) m a y be regarded as a c o n t i n u o u s f u n c t i o n of b o t h 
a rgumen t s . Subs t i tu t ing the first a n d the th i rd t e rm on the r ight h a n d side of Eq . (2) 
by their Tay lo r expans ions a n d neglect ing the t e rms of higher t han the th i rd o rder 
one ob ta ins 

dp _ n + k d2(i2'3p) c(i2'3p) 

dt 2 di2 ci U 

This re la t ion can be r ea r ranged to 

cy/de = ad2yjdx2 - £(wy)/cx , (5) 

where 9 = g2t, x = ci2'3, g = (2/3)c, a = (X + ju)/2, b = / - p, 

y(x, 6) = 0 (d/ ' /dx) , w = (b \g ) (x / c ) 1 / 2 - (a /2x) . 

F o r react ion events symmetr ic in t ime, when we a s sume 

/. = [ ! , or , equivalent ly , b — 0 , 

Eq . (5) reduces to the fo l lowing s imple f o r m 

dx dx1 2x dx 2x2 

or , a f te r t r a n s f o r m a t i o n z(x) = j ' (x) x 1 / 2 , to 

5x 2x cx 

where x = aO = g2at. 

I n the fo l lowing examina t ion of the p roper t i es of the a b o v e mode l we shall restr ict 
ourselves to the pa r t i cu la r case of b = 0. 

Eqs (6) possess r a the r compl ica ted analyt ical so lut ions . F o r ins tance, f o r sui table 
initial a n d b o u n d a r y cond i t ions 5 as 

z(0, t ) = 0 , lim z(x, r) = 0 (7) 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 40] [1975] 



3088 Vacek, Zacek, Skrivanek : 

z ( x , 0 ) = nnl(n - 1 ) ! x n e x p ( - n x ) ( 8 ) 

the solution of Eq. (6 b) is an expression obtained by the Hankel transform of the 
solution derived by the method of separation of variables7 

z ( x , t ) = r ( n + 2 ) e x p ( ~ ? 2 r ) ( a 2 + „2)-M> + s/*) 

( " - ! ) ! Ja = O 

• Pn+
3l% ( v / ( n 2 " + ; 2 j ) V ^ d ;- ' w 

where T, P, J designate respectively the gamma the Legendre and the Bessel function8. 
A similar expression for the solution of Eq. (6a) and identical conditions may be 
found in ref.2. 

Examination of the properties of the function v using numerical methods of solving 
Eqs (6) seems more convenient than dealing with the expression of the type as in 
Eq. (9). A numerical solution for conditions analogous to those in Eqs (7) and (S) 
setting n = 2 (for more details see ref.2) yielded the time course of the distribution 
function v(x, t). This course was characterized by the moments of the function y 

"oo 
/n(T) = xn / 2v(x, r) dx, for n = 0, 1, 2, 3, 4 . (10) 

Mutual relation of the moments In of the t ransformed frequency funct ion, y, to the moments Jn 

of the original frequency funct ion, p, is given by 

/ = | xn'2y dx cn,2in,3p di - cn/2Jn , (11) 
i = 0 

where 

/ n = in/3p di. (12) 
J i = 0 

The expression v d.v = p dz represents the number of particles within the interval <(x, .x — d.v) 
or <7, i -r- d/)>. Simultaneously x represents the surface area and / the volume of the particle. 
Thus xn^2 or are proport ional to the n-th power of the characteristic dimension of the particle. 
The product following the integration sign in Eq. (10) is thus the differential of the «-th moment 
of the f requency funct ion in the usual sense of the definitions and with the usual physical meaning, 
see e.g. ref . 9 . 

The obtained time courses of individual moments are shown in Fig. 1. The figure 
indicates clearly that the model possesses the intuitively expected features of the 
process of aging: The zsro-th moment (proportional to the number of particles) 
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decreases similarly as the second moment (proportional to the total surface area of 
all particles). The constancy of the third moment reflects the principle of conservation 
of mass of the particles. The growth of the fourth moment characterizes the growth of 

the mean particle diameter (the mean diameter of a set of particles may be conveniently 
defined as the fraction / 4 / / 3 ) . The above dependences are also in full agreement with 
the experimental observation of aging of crystalline suspensions undergoing recrystal-
lization2 '10. It is thus apparent that even a model based on highly simplified concepts 
is capable of describing certain important features of aging of the set of particles. 
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